dlambdap(x, df, t, log = FALSE, order.max=6)plambdap(q, df, t, lower.tail = TRUE, log.p = FALSE, order.max=6)
qlambdap(p, df, t, lower.tail = TRUE, log.p = FALSE, order.max=6)
rlambdap(n, df, t)
x,q,p,n
.x,q,p,n
.dlambdap
gives the density, plambdap
gives the
distribution function, qlambdap
gives the quantile function,
and rlambdap
generates random deviates.Invalid arguments will result in return value NaN
with a warning.
Lecoutre, Bruno. "Two useful distributions for Bayesian predictive procedures under normal models." Journal of Statistical Planning and Inference 79 (1999): 93--105.
dt, pt, qt, rt
,
K prime distribution functions, dkprime, pkprime, qkprime, rkprime
,
upsilon distribution functions, dupsilon, pupsilon, qupsilon, rupsilon
,rv <- rlambdap(100, 50, t=0.01)
d1 <- dlambdap(1, 50, t=0.01)
pv <- plambdap(rv, 50, t=0.01)
qv <- qlambdap(ppoints(length(rv)), 50, t=1)
Run the code above in your browser using DataLab