Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


logcondens (version 2.0.2)

qloglin: Quantile Function In a Simple Log-Linear model

Description

Suppose the random variable $X$ has density function gθ(x)=θexp(θx)exp(θ)1 for an arbitrary real number $\theta$ and $x \in [0,1]$. The function qloglin is simply the quantile function Gθ1(u)=θ1log(1+(eθ1)u) in this model, for $u \in [0,1]$. This quantile function is used for the computation of quantiles of $\widehat F_m$ in quantilesLogConDens.

Usage

qloglin(u, t)

Arguments

u
Vector in $[0,1]^d$ where quantiles are to be computed at.
t
Parameter $\theta$.

Value

  • zVector containing the quantiles $G_n^{-1}(u_i)$ for $i = 1, \ldots, d$.