Last chance! 50% off unlimited learning
Sale ends in
qpolicy_loss(q, mu, delta, lambda, theta, family, y.max = 20,zt=TRUE)
zt=TRUE
, we use a zero-truncated Poisson variable. Otherwise, we use a Poisson variable. Default is TRUE
.
y.max
is the upper value of the finite sum that approximates the infinite sum.
ppolicy_loss
,epolicy_loss
,dpolicy_loss
library(VineCopula)
mu<-1000
delta<-0.09
lambda<-2.5
family<-1
theta<-BiCopTau2Par(tau=0.5,family=family)
# upper quartile
out<-qpolicy_loss(0.75,mu,delta,lambda,theta,family)
Run the code above in your browser using DataLab