qqghyp(object, data = ghyp.data(object), gaussian = T, line = T,
main = "Generalized Hyperbolic Q-Q Plot",
xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
ghyp.pch = 1, gauss.pch = 6, ghyp.lty = "solid",
gauss.lty = "dashed", ghyp.col = "black", gauss.col = "black",
plot.legend = T, location = "topleft", legend.cex = 0.8,
spline.points = 150, root.tol = .Machine$double.eps^0.5,
rel.tol = root.tol, abs.tol = root.tol^1.5, ...)mle.ghyp. Alternatively
an object of class TRUE a qq-plot of the normal distribution is plotted as a reference.TRUE a line is fitted and drawn.TRUE a legend is drawn.legend for possible values.qghyp.uniroot.integrate.integrate.plot.hist, fit.ghypuv, qghyp,
plot,
linesdata(smi.stocks)
smi <- fit.ghypuv(data = smi.stocks[, "Swiss.Re"])
qqghyp(smi, spline.points = 100)Run the code above in your browser using DataLab