
med.regressCOP2
). Using copulas, the quantile regression is expressed as
derCOPinv2
), andThe last step is optional as step two produces the regression in probability space, which might be desired, and step 3 actually transforms the probability regressions into the quantiles of the respective random variables.
qua.regressCOP2(F=0.5,
V=seq(0.01,0.99, by=0.01),
cop=NULL, para=NULL, ...)
med.regressCOP2
, derCOPinv2
# Specify a negatively associated Plackett copula and perform the
# regression using the defaults. Plot the regression---median
# in this case
theta <- 0.10
R <- qua.regressCOP2(cop=PLACKETTcop, para=c(theta))
plot(R$U,R$V, type="l", lwd=3, xlim=c(0,1), ylim=c(0,1))
lines(R$U,(1+(theta-1)*R$U)/(theta+1), col=2)
R <- qua.regressCOP2(F=0.90,cop=PLACKETTcop, para=c(theta))
lines(R$U,R$V, col=2, lwd=2)
R <- qua.regressCOP2(F=0.10,cop=PLACKETTcop, para=c(theta))
lines(R$U,R$V, col=2, lty=2)
# Specify a composite copula as two Placketts with respective
# parameters and then the mixing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=c(0.14), para2=c(21),
alpha=0.04, beta=0.68)
# Initial a plot
plot(c(0,1),c(0,1), type="n", lwd=3,
xlab="U, NONEXCEEDANCE PROBABILITY",
ylab="V, NONEXCEEDANCE PROBABILITY")
# Draw the regression of V on U and then U on V (swap=TRUE)
qua.regressCOP.draw(cop=composite2COP, para=para)
qua.regressCOP.draw(cop=composite2COP, para=para, swap=TRUE, lty=2)
Run the code above in your browser using DataLab