
quadFuncDeriv( xNames, data, coef, coefCov = NULL,
homWeights = NULL, quadHalf = TRUE )
n
exogenous variables in xNames
,
the n+1
alpha coefficients must have names
a_0
, ..., a_n
and the n*(n+1)/2
coef
.
coefCov
is provided, it has the attributes
variance
and stdDev
,
which are two data frames containing the variances
and the standard deviations, respectively, of the derivatives.quadFuncEst
and quadFuncCalc
data( germanFarms )
# output quantity:
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
# quantity of variable inputs
germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
# a time trend to account for technical progress:
germanFarms$time <- c(1:20)
# estimate a quadratic production function
estResult <- quadFuncEst( "qOutput", c( "qLabor", "land", "qVarInput", "time" ),
germanFarms )
# compute the marginal products of the inputs
margProducts <- quadFuncDeriv( c( "qLabor", "land", "qVarInput", "time" ),
germanFarms, coef( estResult ), vcov( estResult ) )
# all marginal products
margProducts
# their t-values
margProducts / attributes( margProducts )$stdDev
Run the code above in your browser using DataLab