Learn R Programming

lmomco (version 1.7.3)

quaemu: Quantile Function of the Eta-Mu Distribution

Description

This function computes the quantiles of the Eta-Mu ($\eta:\mu$) distribution given $\eta$ and $\mu$) of the distribution computed by paremu. The quantile function of the distribution is complex and numerical rooting of the cumulative distribution function is used. The quantile function is $$x(F,\eta,\mu) = \ldots$$ where $x(F)$ is the quantile for nonexceedance probability $F$.

Usage

quaemu(f, para, paracheck=TRUE, yacoubsintegral=TRUE, eps=1e-7)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from paremu or similar.
paracheck
A logical controlling whether the parameters and checked for validity.
yacoubsintegral
A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of pdfemu.
eps
A close-enough error term for the recursion process.

Value

  • Quantile value for nonexceedance probability $F$.

References

Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81

See Also

cdfemu, paremu

Examples

Run this code
quaemu(0.75,vec2par(c(0.9, 1.5), type="emu"))

Run the code above in your browser using DataLab