quaemu: Quantile Function of the Eta-Mu Distribution
Description
This function computes the quantiles of the Eta-Mu ($\eta:\mu$) distribution given $\eta$ and $\mu$) of the distribution computed
by paremu. The quantile function of the distribution is complex and numerical rooting of the cumulative distribution function is used. The quantile function is
$$x(F,\eta,\mu) = \ldots$$
where $x(F)$ is the quantile for nonexceedance probability $F$.
A logical controlling whether the parameters and checked for validity.
yacoubsintegral
A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of pdfemu.
eps
A close-enough error term for the recursion process.
Value
Quantile value for nonexceedance probability $F$.
References
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81