Learn R Programming

lmomco (version 2.2.5)

quaemu: Quantile Function of the Eta-Mu Distribution

Description

This function computes the quantiles of the Eta-Mu ($\eta:\mu$) distribution given $\eta$ and $\mu$) computed by paremu. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfemu) is used.

Usage

quaemu(f, para, paracheck=TRUE, yacoubsintegral=TRUE, eps=1e-7)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from paremu or vec2par.
paracheck
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.
yacoubsintegral
A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of pdfemu.
eps
A close-enough error term for the recursion process.

Value

Quantile value for nonexceedance probability $F$.

References

Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81

See Also

cdfemu, pdfemu, lmomemu, paremu

Examples

Run this code
## Not run: 
# quaemu(0.75,vec2par(c(0.9, 1.5), type="emu")) ### End(Not run)

Run the code above in your browser using DataLab