lmr <- lmoms(c(123,34,4,654,37,78))
g <- pargam(lmr)
quagam(0.5,g)
## Not run:
# # generate 50 random samples from this fitted parent
# Qsim <- rlmomco(5000,g)
# # compute the apparent gamma parameter for this parent
# gsim <- pargam(lmoms(Qsim))
# ## End(Not run)
## Not run:
# # 3-p Generalized Gamma Distribution and gamlss.dist package parameterization
# gg <- vec2par(c(2, 4, 3), type="gam")
# X <- gamlss.dist::rGG(1000, mu=2, sigma=4, nu=3); FF <- nonexceeds(sig6=TRUE)
# plot(qnorm(lmomco::pp(X)), sort(X), pch=16, col=8) # lets compare the two quantiles
# lines(qnorm(FF), gamlss.dist::qGG(FF, mu=2, sigma=4, nu=3), lwd=6, col=3)
# lines(qnorm(FF), quagam(FF, gg), col=2, lwd=2) # ## End(Not run)
## Not run:
# # 3-p Generalized Gamma Distribution and gamlss.dist package parameterization
# gg <- vec2par(c(7.4, 0.2, -3), type="gam")
# X <- gamlss.dist::rGG(1000, mu=7.4, sigma=0.2, nu=-3); FF <- nonexceeds(sig6=TRUE)
# plot(qnorm(lmomco::pp(X)), sort(X), pch=16, col=8) # lets compare the two quantiles
# lines(qnorm(FF), gamlss.dist::qGG(FF, mu=7.4, sigma=0.2, nu=-3), lwd=6, col=3)
# lines(qnorm(FF), quagam(FF, gg), col=2, lwd=2) # ## End(Not run)
Run the code above in your browser using DataLab