Learn R Programming

lmomco (version 2.0.1)

quagov: Quantile Function of the Govindarajulu Distribution

Description

This function computes the quantiles of the Govindarajulu distribution given parameters ($\xi$, $\alpha$, and $\beta$) of the distribution computed by pargov. The quantile function of the distribution is

$$x(F) = \xi + \alpha[(\beta+1)F^\beta - \beta F^{\beta+1}] \mbox{,}$$

where $x(F)$ is the quantile for nonexceedance probability $F$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $\beta$ is a shape parameter.

Usage

quagov(f, para, paracheck=TRUE)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from pargov or similar.
paracheck
A logical controlling whether the parameters and checked for validity. Overriding of this check might be extremely important and needed for use of the distribution quantile function in the context of TL-moments with nonzero trimming.

Value

  • Quantile value for for nonexceedance probability $F$.

References

Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton.

Nair, N.U., Sankaran, P.G., Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.

See Also

cdfgov, , pdfgov, pargov

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
  quagov(0.5,pargov(lmr))

Run the code above in your browser using DataLab