This function computes the quantiles of the Kappa-Mu (\(\kappa:\mu\)) distribution given parameters (\(\kappa\) and \(\alpha\)) computed by parkmu. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfkmu) is used.
quakmu(f, para, paracheck=TRUE, getmed=FALSE, qualo=NA, quahi=NA, verbose=FALSE,
marcumQ=TRUE, marcumQmethod=c("chisq", "delta", "integral"))Nonexceedance probability (\(0 \le F \le 1\)).
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.
A lower limit of the range of \(x\) to look for a uniroot of \(F(x)\).
An upper limit of the range of \(x\) to look for a uniroot of \(F(x)\).
Should alert messages be shown by message()?
Same argument for cdfkmu, which the user can set change.
Same argument for cdfkmu, which the user can set change.
Quantile value for nonexceedance probability \(F\).
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81
# NOT RUN {
quakmu(0.75,vec2par(c(0.9, 1.5), type="kmu"))
# }
Run the code above in your browser using DataLab