quantileResiduals
computes the quantile residuals of the specified GMAR, StMAR, or G-StMAR model.
quantileResiduals(
data,
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
parametrization = c("intercept", "mean")
)
a numeric vector or class 'ts'
object containing the data. NA
values are not supported.
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMAR type components M1
in the
first element and StMAR type components M2
in the second element. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size
Size
Size
Replace the vectors
Size
Size
Size
Replace the vector
Symbol parametrization=="mean"
, just replace each intercept term M1
components are GMAR type
and the rest M2
components are StMAR type.
Note that in the case M=1, the parameter
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1
components
are GMAR type and the rest M2
components are StMAR type.
a logical argument stating whether the AR coefficients
specifies linear constraints applied to the autoregressive parameters.
a list of size
a size
Symbol p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
is the model parametrized with the "intercepts"
Returns a
Install the suggested package "gsl" for faster evaluation of the quantile residuals of StMAR and G-StMAR models.
Numerical integration is employed if the quantile residuals cannot be obtained analytically with the hypergeometric function using the package 'gsl'.
Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's t-distribution. arXiv:2003.05221 [econ.EM].
# NOT RUN {
# StMAR model
params43 <- c(0.09, 1.31, -0.46, 0.33, -0.23, 0.04, 0.01, 1.15,
-0.3, -0.03, 0.03, 1.54, 0.06, 1.19, -0.3, 0.42, -0.4, 0.01,
0.57, 0.22, 8.05, 2.02, 10000)
quantileResiduals(T10Y1Y, p=4, M=3, params=params43, model="StMAR")
# Restricted G-StMAR-model
params42gsr <- c(0.11, 0.03, 1.27, -0.39, 0.24, -0.17, 0.03, 1.01, 0.3, 2.03)
quantileResiduals(T10Y1Y, p=4, M=c(1, 1), params=params42gsr, model="G-StMAR",
restricted=TRUE)
# Two-regime GMAR p=2 model with the second AR coeffiecient of
# of the second regime contrained to zero.
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(0.03, 1.27, -0.29, 0.03, -0.01, 0.91, 0.34, 0.88)
quantileResiduals(T10Y1Y, p=2, M=2, params=params22c, model="GMAR",
constraints=constraints)
# }
Run the code above in your browser using DataLab