
Last chance! 50% off unlimited learning
Sale ends in
quantileTestPValue(m, n, r, k, exact.p = TRUE)
NA
), undefined (NaN
), and infinite (Inf
, -Inf
)
values are allowed but wilNA
), undefined (NaN
), and infinite (Inf
, -Inf
)
values are allowed but wilr
must be greater than
or equal to 2 and less than or equal to the corresponding elements of
exact.p=TRUE
; the default) or based on
the normal approximation (exact.p=FALSE
).m
, n
, r
, and k
are not all the same
length, they are replicated to be the same length as the length of the longest
argument.
For details on how the p-value is computed, see the help file for
quantileTest
.
The function quantileTestPValue
is useful for determining what values to
use for r
and k
, given the values of m
, n
, and a
specified significance level $\alpha$. The function
quantileTestPValue
can be used to reproduce Tables A.6-A.9 in
USEPA (1994, pp.A.22-A.25).quantileTest
.quantileTest
, wilcox.test
,
htest.object
, Hypothesis Tests.# Reproduce the first column of Table A.9 in USEPA (1994, p.A.25):
#-----------------------------------------------------------------
p.vals <- quantileTestPValue(m = 5, n = seq(15, 45, by = 5),
r = c(9, 3, 4, 4, 5, 5, 6), k = c(4, 2, 2, 2, 2, 2, 2))
round(p.vals, 3)
#[1] 0.098 0.091 0.119 0.089 0.109 0.087 0.103
#==========
# Clean up
#---------
rm(p.vals)
Run the code above in your browser using DataLab