# NOT RUN {
# }
# NOT RUN {
# -------------------- ##
# Boston Housing data
# -------------------- ##
library(mlbench)
library(randomForest)
data(BostonHousing)
dat=as.data.frame(na.omit(BostonHousing))
## omitting arguments time/id assumes rows are iid
h=hrf(x=dat,yindx="medv",ntrees=500)
## get deciles on training data
quant=quantile_hrf(h,prob=seq(.1,.9,length=10))
# ------------------------------------------------ ##
# Simulated data from model with random intercept
# ------------------------------------------------ ##
p=5;sigma_e=.5;sigma_a=.5;v=rep(1,p);n=500;pnoise=2
random_intercept=rnorm(n,sd=sigma_a)
random_intercept=as.numeric(matrix(random_intercept,nrow=p,ncol=n,byrow=TRUE))
x=random_intercept+rnorm(n*p,sd=sigma_e)
id=sort(rep(1:n,p))
time<-rep(1:p,n)
znoise=matrix(rnorm(n*p*pnoise),ncol=pnoise)
xx=cbind(time,x,znoise)
# fit historical random forest
hb=hrf(x=xx,time=time,id=id,yindx=2,ntrees=100,mtry=4,nsamp=5)
# get deciles on training data
quant=quantile_hrf(hb,prob=seq(.1,.9,length=10))
# }
Run the code above in your browser using DataLab