Learn R Programming

lmomco (version 0.96.2)

quaray: Quantile Function of the Rayleigh Distribution

Description

This function computes the quantiles of the Rayleigh distribution given parameters ($\xi$ and $\alpha$) of the distribution computed by pargum. The quantile function of the distribution is

$$x(F) = \xi + \sqrt{-2\alpha^2\log(1-F)} \mbox{,}$$

where $x(F)$ is the quantile for nonexceedance probability $F$, $\xi$ is a location parameter, and $\alpha$ is a scale parameter.

Usage

quaray(f, para)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from parray or similar.

Value

  • Quantile value for nonexceedance probability $F$.

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, parray

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
  quaray(0.5,parray(lmr))

Run the code above in your browser using DataLab