Last chance! 50% off unlimited learning
Sale ends in
quasibinomialff(link = "logit", mv = FALSE, onedpar = !mv,
parallel = FALSE, zero = NULL)
Links
for more choices.TRUE
, then the response is interpreted
as $M$ binary responses, where $M$ is the number of columns
of the response matrix. In this case, the response matrix should have
zero/one values only. If FALS
mv
, then a separate dispersion
parameter will be computed for each response (column), by default.
Setting onedpar=TRUE
will pool them so that there is only one
dispersion parameter to be estimatmv
is TRUE
. This
argument allows for the parallelism assumption whereby the regression
coefficients for a variable is constrained to be equal over the $M$
linear/additive predictors.A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the binomial model. Over-dispersion is more common in practice.
Setting mv=TRUE
is necessary when fitting a Quadratic RR-VGLM
(see cqo
) because the response will be a matrix of
$M$ columns (e.g., one column per species). Then there will be
$M$ dispersion parameters (one per column of the response).
binomialff
,
rrvglm
,
cqo
,
cao
,
logit
,
probit
,
cloglog
,
cauchit
,
poissonff
,
quasipoissonff
,
quasibinomial
.quasibinomialff()
quasibinomialff(link="probit")
# Nonparametric logistic regression
data(hunua)
hunua = transform(hunua, a.5 = sqrt(altitude)) # Transformation of altitude
fit1 = vglm(agaaus ~ poly(a.5, 2), quasibinomialff, hunua)
fit2 = vgam(agaaus ~ s(a.5, df=2), quasibinomialff, hunua)
plot(fit2, se=TRUE, llwd=2, lcol="red", scol="red",
xlab="sqrt(altitude)", ylim=c(-3,1),
main="GAM and quadratic GLM fitted to species data")
plotvgam(fit1, se=TRUE, lcol="blue", scol="blue", add=TRUE, llwd=2)
fit1@misc$dispersion # dispersion parameter
logLik(fit1)
# Here, the dispersion parameter defaults to 1
fit0 = vglm(agaaus ~ poly(a.5, 2), binomialff, hunua)
fit0@misc$dispersion # dispersion parameter
Run the code above in your browser using DataLab