# NOT RUN {
data(bcrp)
formula1<- I(cesdt1-cesdt3)~cond | nationality+marital+wcht1+age+
trext+comorbid+disopt1+uncomt1+negsoct1
set.seed(10)
control1<-quint.control(maxl=5, B=2, crit="dm")
quint1<-quint(formula1, data= subset(bcrp,bcrp$cond<3),control=control1) #Grow a QUINT tree
prquint1<-prune(quint1) #Prune tree to optimal size
bootquint1<-quint.bootstrapCI(prquint1, n_boot = 5) #apply the bootstrap procedure
#the summary of the tree with the new standard errors obtained from the bootstrap procedure
summary(bootquint1$tree)
#all results of the bootstrap procedure
bootquint1$bootinfo
#plot wiht 95% confidence intervals using the new standard errors
plot(bootquint1$tree)
# }
Run the code above in your browser using DataLab