r.pbis(matrix,
NA.method = "NPModel", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel = "ML",
mu = 0, sigma = 1)"Hotdeck", "NPModel" (default), and "PModel".IP=NULL). The options available are "1PL", "2PL" (default), and "3PL".matrix.
In case no ability parameters are available then Ability=NULL.Ability=NULL). The options available are "ML" (default), "BM", and "WL".method="BM". Default is 0.method="BM". Default is 1.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.NA.method="PModel", otherwise NULL.Missing values in matrix are imputed by one of three single imputation methods: Hotdeck imputation (NA.method = "Hotdeck"), nonparametric model imputation (NA.method = "NPModel"), and parametric model imputation (NA.method = "PModel"); see Zhang and Walker (2008).
IRT.PModel = "1PL","2PL", or"3PL"). Item parameters (IP) and ability parameters (Ability) may be provided for this purpose (otherwise the algorithm finds estimates for these parameters).Karabatsos, G. (2003) Comparing the Aberrant Response Detection Performance of Thirty-Six Person-Fit Statistics. Applied Measurement In Education, 16(4), 277--298.
Meijer, R. R., and Sijtsma, K. (2001) Methodology review: Evaluating person fit. Applied Psychological Measurement, 25(2), 107--135.
Zhang, B., and Walker, C. M. (2008) Impact of missing data on person-model fit and person trait estimation. Applied Psychological Measurement, 32(6), 466--479.
# Load the inadequacy scale data (dichotomous item scores):
data(InadequacyData)
# Compute the r.pbis scores:
rpbis.out <- r.pbis(InadequacyData)Run the code above in your browser using DataLab