rPosteriorPredictive.GaussianNIG: Posterior predictive random generation of a "GaussianNIG" object
Description
Generate random samples from the posterior predictive distribution of the following structure:
beta,sigma^2|gamma ~ NIG(gamma)
x|beta,sigma^2,X ~ Gaussian(X
where gamma = (m,V,a,b) is the Normal-Inverse-Gamma(NIG) parameter, "m" is a numeric "location" parameter; "V" is a symmetric positive definite matrix representing the "scale" parameters; "a" and "b" are the "shape" and "rate" parameter of the Inverse Gamma distribution.
The model structure and prior parameters are stored in a "GaussianNIG" object.
Posterior predictive is a distribution of x|gamma,X.
Usage
# S3 method for GaussianNIG
rPosteriorPredictive(obj, n, X, ...)
Arguments
obj
A "GaussianNIG" object.
n
integer, number of samples.
X
matrix, the location of the prediction, each row is a location.
...
Additional arguments to be passed to other inherited types.
Value
A matrix of n rows and nrow(X) columns, each row is a sample.
References
Banerjee, Sudipto. "Bayesian Linear Model: Gory Details." Dowloaded from http://www. biostat. umn. edu/~ ph7440 (2008).