Last chance! 50% off unlimited learning
Sale ends in
randProj(data, seeds = 0, ...,
type = c("classification", "uncertainty", "errors"), ask = TRUE,
quantiles = c(0.75,0.95), symbols, scale = FALSE, identify = FALSE,
CEX = 1, PCH = ".", xlim, ylim)
c("classification","uncertainty","errors")
. The
function will produce the corresponding plot if it has been supplied
sufficient information to do so. If more than one plot is possible
then users will be asked to chooask=TRUE
.classification
. Elements in symbols
correspond to classes in classification
in order of
appearance in classific
scale=FALSE
coordProj
,
spinProj
,
mclust2Dplot
,
mclustOptions
,
do.call
,data(iris)
irisMatrix <- as.matrix(iris[,1:4])
irisClass <- iris[,5]
msEst <- mstepVVV(irisMatrix, unmap(irisClass))
par(pty = "s", mfrow = c(2,3))
randProj(irisMatrix, seeds = 0:5, truth=irisClass,
mu = msEst$mu, sigma = msEst$sigma, z = msEst$z)
do.call("randProj", c(list(data = irisMatrix, seeds = 0:5, truth=irisClass),
msEst))
Run the code above in your browser using DataLab