
Function to perform bootstraped simulations for multiblock principal component analysis with instrumental variables or multiblock partial least squares, in order to get confidence intervals for some parameters, i.e., regression coefficients, variable and block importances
# S3 method for multiblock
randboot(object, nrepet = 199, optdim, ...)
integer indicating the number of repetitions
integer indicating the optimal number of dimensions, i.e., the optimal number of global components to be introduced in the model
other arguments to be passed to methods
A list containing objects of class krandboot
Carpenter, J. and Bithell, J. (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians.Statistics in medicine, 19, 1141-1164
# NOT RUN {
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf =
FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpcaiv.chick <- mbpcaiv(dudiY.chick, ktabX.chick, scale = TRUE,
option = "uniform", scannf = FALSE, nf = 4)
## nrepet should be higher for a real analysis
test <- randboot(resmbpcaiv.chick, optdim = 4, nrepet = 10)
test
if(adegraphicsLoaded())
plot(test$bipc)
# }
Run the code above in your browser using DataLab