Last chance! 50% off unlimited learning
Sale ends in
Return a list of randomly split dataframes with the provided weights.
randomSplit(x, weights, seed)# S4 method for SparkDataFrame,numeric
randomSplit(x, weights, seed)
A SparkDataFrame
A vector of weights for splits, will be normalized if they don't sum to 1
A seed to use for random split
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, histogram
,
insertInto
, intersect
,
isLocal
, join
,
limit
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
union
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.text
# NOT RUN {
sparkR.session()
df <- createDataFrame(data.frame(id = 1:1000))
df_list <- randomSplit(df, c(2, 3, 5), 0)
# df_list contains 3 SparkDataFrames with each having about 200, 300 and 500 rows respectively
sapply(df_list, count)
# }
Run the code above in your browser using DataLab