rasch.jml.jackknife1: Jackknifing the IRT Model Estimated by Joint Maximum Likelihood (JML)
Description
Jackknife estimation is an alternative to other ad hoc proposed
methods for bias correction (Hahn & Newey, 2004).Usage
rasch.jml.jackknife1(jmlobj)
Arguments
jmlobj
Output of rasch.jml
Value
- A list with following entries
- itemA data frame with item parameters
b.JML
: {Item difficulty from JML estimation}b.JMLcorr
: {Item difficulty from JML estimation by
applying the correction factor$(I-1)/I$
b.jack
: {Item difficulty from Jackknife estimation}
b.jackse
: {Standard error of Jackknife estimation
for item difficulties.
Note that this parameter refer to the standard error
with respect to item sampling}
b.JMLse
: {Standard error for item difficulties
obtained from JML estimation}
- jack.itemdiff
{A matrix containing all item difficulties obtained by Jackknife}
Hahn, J., & Newey, W. (2004). Jackknife and analytical bias reduction for
nonlinear panel models. Econometrica, 72, 1295-1319.
[object Object],[object Object]
For JML estimation rasch.jml
.
For analytical bias correction methods see rasch.jml.biascorr
.
#############################################################################
# SIMULATED EXAMPLE 1: Simulated data from the Rasch model
#############################################################################
set.seed(7655)
N <- 5000 # number of persons
I <- 11 # number of items
b <- seq( -2 , 2 , length=I )
dat <- sim.raschtype( rnorm( N ) , b )
colnames(dat) <- paste( "I" , 1:I , sep="")
# estimate the Rasch model with JML
mod <- rasch.jml( dat )
summary(mod)
# re-estimate the Rasch model using Jackknife
mod2 <- rasch.jml.jackknife1( mod )
##
## Joint Maximum Likelihood Estimation
## Jackknife Estimation
## 11 Jackknife Units are used
## |--------------------PROGRESS--------------------|
## |------------------------------------------------|
##
## N p b.JML b.JMLcorr b.jack b.jackse b.JMLse
## I1 4929 0.853 -2.345 -2.131 -2.078 0.079 0.045
## I2 4929 0.786 -1.749 -1.590 -1.541 0.075 0.039
## I3 4929 0.723 -1.298 -1.180 -1.144 0.065 0.036
## I4 4929 0.657 -0.887 -0.806 -0.782 0.059 0.035
## I5 4929 0.576 -0.420 -0.382 -0.367 0.055 0.033
## I6 4929 0.492 0.041 0.038 0.043 0.054 0.033
## I7 4929 0.409 0.502 0.457 0.447 0.056 0.034
## I8 4929 0.333 0.939 0.854 0.842 0.058 0.035
## I9 4929 0.264 1.383 1.257 1.229 0.065 0.037
## I10 4929 0.210 1.778 1.617 1.578 0.071 0.040
## I11 4929 0.154 2.266 2.060 2.011 0.077 0.044
#-> Item parameters obtained by jackknife seem to be acceptable.Joint maximum likelihood (JML)
Details
Note that items are used for jackknifing (Hahn & Newey, 2004).
By default, all $I$ items in the data frame are used as
jackknife units.