Learn R Programming

ltm (version 0.8-9)

rasch: Rasch Model

Description

Fit the Rasch model under the Item Response Theory approach.

Usage

rasch(data, constraint = NULL, IRT.param = TRUE, start.val = NULL, 
    na.action = NULL, control = list())

Arguments

data
a data.frame (that will be converted to a numeric matrix using data.matrix()) or a numeric matrix of manifest variables.
constraint
a two-column numeric matrix with at most $p$ rows (where $p$ is the number of items), specifying fixed-value constraints. The first column represents the item (i.e., $1$ denotes the first item, $2$ the second, etc., and $p+1$ the discri
IRT.param
logical; if TRUE then the coefficients' estimates are reported under the usual IRT parameterization. See Details for more info.
start.val
the character string "random" or a numeric vector of $p+1$ starting values, where the first $p$ values correspond to the easiness parameters while the last value corresponds to the discrimination parameter. If "random", random starting
na.action
the na.action to be used on data. In case of missing data, if na.action = NULL the model uses the available cases, i.e., it takes into account the observed part of sample units with missing values
control
a list of control values, [object Object],[object Object],[object Object],[object Object]

Value

  • An object of class rasch with components,
  • coefficientsa matrix with the parameter values at convergence. These are always the estimates of $\beta_i, \beta$ parameters, even if IRT.param = TRUE.
  • log.Likthe log-likelihood value at convergence.
  • convergencethe convergence identifier returned by optim().
  • hessianthe approximate Hessian matrix at convergence returned by optim().
  • countsthe number of function and gradient evaluations used by the quasi-Newton algorithm.
  • patternsa list with two components: (i) X: a numeric matrix that contains the observed response patterns, and (ii) obs: a numeric vector that contains the observed frequencies for each observed response pattern.
  • GHa list with two components used in the Gauss-Hermite rule: (i) Z: a numeric matrix that contains the abscissas, and (ii) GHw: a numeric vector that contains the corresponding weights.
  • max.scthe maximum absolute value of the score vector at convergence.
  • constraintthe value of the constraint argument.
  • IRT.paramthe value of the IRT.param argument.
  • Xa copy of the response data matrix.
  • controlthe values used in the control argument.
  • na.actionthe value of the na.action argument.
  • callthe matched call.

Warning

In case the Hessian matrix at convergence is not positive definite, try to re-fit the model using rasch(..., start.val = "random").

Details

The Rasch model is a special case of the unidimensional latent trait model when all the discrimination parameters are equal. This model was first discussed by Rasch (1960) and it is mainly used in educational testing where the aim is to study the abilities of a particular set of individuals. The model is defined as follows $$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_{i} + \beta z,$$ where $\pi_i$ denotes the conditional probability of responding correctly to the $i$th item given $z$, $\beta_{i}$ is the easiness parameter for the $i$th item, $\beta$ is the discrimination parameter (the same for all the items) and $z$ denotes the latent ability. If IRT.param = TRUE, then the parameters estimates are reported under the usual IRT parameterization, i.e., $$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta (z - \beta_i^*).$$ The fit of the model is based on approximate marginal Maximum Likelihood, using the Gauss-Hermite quadrature rule for the approximation of the required integrals.

References

Baker, F. and Kim, S-H. (2004) Item Response Theory, 2nd ed. New York: Marcel Dekker. Rasch, G. (1960) Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Paedagogiske Institute. Rizopoulos, D. (2006) ltm: An R package for latent variable modelling and item response theory analyses. Journal of Statistical Software, 17(5), 1--25. URL http://www.jstatsoft.org/v17/i05/

See Also

coef.rasch, fitted.rasch, summary.rasch, anova.rasch, plot.rasch, vcov.rasch, GoF.rasch, item.fit, person.fit, margins, factor.scores

Examples

Run this code
## The common form of the Rasch model for the 
## LSAT data, assuming that the discrimination
## parameter equals 1
rasch(LSAT, constraint = cbind(ncol(LSAT) + 1, 1))


## The Rasch model for the LSAT data under the 
## normal ogive; to do that fix the discrimination
## parameter to 1.702
rasch(LSAT, constraint = cbind(ncol(LSAT) + 1, 1.702))

## The Rasch model for the LSAT data with
## unconstraint discrimination parameter
rasch(LSAT)

## The Rasch model with (artificially created) 
## missing data
data <- LSAT
data[] <- lapply(data, function(x){
    x[sample(1:length(x), sample(15, 1))] <- NA
    x
})
rasch(data)

Run the code above in your browser using DataLab