rbfST.cv: Leave-one-out cross validation for spatio-temporal radial basis function
Description
It generates the RMSPE value, which is given by the radial basis function
with smoothing eta and robustness rho parameters.
Usage
rbfST.cv(formula, data, eta, rho, n.neigh, func)
Arguments
formula
formula that defines the dependent variable as a linear model of independent variables (covariates or the principal coordinates); suppose the dependent variable has name \(z_{st}\), for a rbfST detrended use \(z_{st}\)~1, for a rbfST with trend, suppose \(z_{st}\) is linearly dependent on x and y, use the formula \(z_{st}\)~x+y (linear trend).
data
SpatialPointsDataFrame: should contain the spatio-temporal dependent variable, independent variables (statics and/or dynamics), spatial coordinates and the time as an integer or numerical variable.
eta
the optimal smoothing parameter, we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation.
rho
optimal robustness parameter, we recommend using the value obtained by minimizing the root-mean-square prediction errors with cross-validation. eta and rho parameters can be optimized simultaneously, through
the bobyqa function from nloptr or minqa packages.
n.neigh
number of nearest observations that should be used for a rbfST
prediction, where nearest is defined in terms of the spatio-temporal locations.
func
spatio-temporal radial basis function; model type: "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available
Value
returns the RMSPE value
References
Melo, C. E. (2012). Analisis geoestadistico espacio tiempo basado en distancias y splines con
aplicaciones. PhD. Thesis. Universitat de Barcelona. 276 p. [link]