Density and random generation for the (one parameter) bivariate Clayton copula distribution.
dbiclaytoncop(x1, x2, apar = 0, log = FALSE)
rbiclaytoncop(n, apar = 0)
vector of quantiles.
The x1
and x2
should both be in the interval
number of observations.
Same as rnorm
.
the association parameter.
Should be in the interval
Logical.
If TRUE
then the logarithm is returned.
dbiclaytoncop
gives the density at point (x1
,x2
),
rbiclaytoncop
generates random deviates (a two-column matrix).
See biclaytoncop
, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation,
for the formula of the
cumulative distribution function and other details.
Clayton, D. (1982) A model for association in bivariate survival data. Journal of the Royal Statistical Society, Series B, Methodological, 44, 414--422.
# NOT RUN {
edge <- 0.01 # A small positive value
N <- 101; x <- seq(edge, 1.0 - edge, len = N); Rho <- 0.7
ox <- expand.grid(x, x)
zedd <- dbiclaytoncop(ox[, 1], ox[, 2], apar = Rho, log = TRUE)
par(mfrow = c(1, 2))
contour(x, x, matrix(zedd, N, N), col = "blue", labcex = 1.5, las = 1)
plot(rbiclaytoncop(1000, 2), col = "blue", las = 1)
# }
Run the code above in your browser using DataLab