Density, distribution function, and random generation for the (one parameter) bivariate Farlie-Gumbel-Morgenstern's distribution.
dbifgmcop(x1, x2, apar, log = FALSE)
pbifgmcop(q1, q2, apar)
rbifgmcop(n, apar)
vector of quantiles.
number of observations.
Same as in runif
.
the association parameter.
Logical.
If TRUE
then the logarithm is returned.
dbifgmcop
gives the density,
pbifgmcop
gives the distribution function, and
rbifgmcop
generates random deviates (a two-column matrix).
See bifgmcop
, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation, for the formula of the
cumulative distribution function and other details.
# NOT RUN {
N <- 101; x <- seq(0.0, 1.0, len = N); apar <- 0.7
ox <- expand.grid(x, x)
zedd <- dbifgmcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbifgmcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")
plot(r <- rbifgmcop(n = 3000, apar = apar), col = "blue")
par(mfrow = c(1, 2))
hist(r[, 1]) # Should be uniform
hist(r[, 2]) # Should be uniform
# }
Run the code above in your browser using DataLab