read.fmrislice
reads pre-filtered fMRI data, mask data, and the design matrix to be used
in fMRI data processing.read.fmrislice(fbase=NULL, slice=NULL, swap=FALSE)
fbase
is left unspecified (default NULL
),
then user datasets need to be provided as input. Otherwise, fbase
indicates the dataset prefix of one of the two demo fMRI datasets to use.
Three data files are required as input.
User specified data files must have the names generated by the FSL/FEAT
pre-processing tool, namely
filtered_func_data.nii.gz, mask.nii.gz, and design.mat.
filtered_func_data.nii.gz specifies the dataset to be analyzed,
mask.nii.gz specifies the dataset to be used as mask.
design.mat specifies the dataset to be used as design matrix.
Typically, these datasets are obtained using the FSL/FEAT pre-processing tool,
or other similar tool.
In cudaBayesreg, versions 10+, read.fmrislice
uses the design.mat format from FSL/FEAT.
The prefix fbase
applies to the demo data files provided in the
complementary package cudaBayesregData:
{fbase}_filtered_func.nii.gz,
{fbase}_mask.nii.gz, and
{fbase}_design.mat.
Two test datasets are included in the package: one with prefix fmri,
the other with prefix swrfM.
The prefix swrfM is used in the random effects example.
See also read.Zsegslice
for user-defined segmented masks. NULL
).FALSE
) for choosing the
right/left data display convention consistent with FSLVIEW.FSL/FEAT Analysis tool, FMRIB Software Library (FSL). URL www.fmrib.ox.ac.uk/fsl.
Brandon Whitcher, Volker Schmid and Andrew Thornton (2011). oro.nifti: Rigorous - NIfTI Input / Output, R package version 0.2.5. URL http://CRAN.R-project.org/package=oro.nifti.
cudaMultireg.slice
read.Zsegslice
premask
## Not run:
# slicedata <- read.fmrislice(fbase="fmri", slice=3)
# print(str(slicedata))
# ## End(Not run)
Run the code above in your browser using DataLab