Learn R Programming

tensorBF (version 1.0.2)

reconstructTensorBF: Reconstruct the data based on posterior samples

Description

reconstructTensorBF returns the reconstruction of the data based on posterior samples of a given run. The function reconstructs the tensor for each posterior sample and then computes the expected value. The reconstruction is returned in the un-normalized space if res$pre contains appropriate preprocessing information.

Usage

reconstructTensorBF(res)

Arguments

res

The model object from function tensorBF.

Value

The reconstructed data, a tensor of the size equivalent to the data on which the model was run.

Examples

Run this code
# NOT RUN {
#Data generation
K <- 3
X <- matrix(rnorm(20*K),20,K)
W <- matrix(rnorm(30*K),30,K)
U <- matrix(rnorm(3*K),3,K)
Y = 0
for(k in 1:K) Y <- Y + outer(outer(X[,k],W[,k]),U[,k])
 Y <- Y + array(rnorm(20*30*3,0,0.25),dim=c(20,30,3))

#Run the method with default options and reconstruct the model's representation of the tensor
# }
# NOT RUN {
res <- tensorBF(Y)
# }
# NOT RUN {
recon = reconstructTensorBF(res)
# }
# NOT RUN {
inds = sample(prod(dim(Y)),100)
# }
# NOT RUN {
plot(Y[inds],recon[inds],xlab="obs",ylab="recon",main=round(cor(Y[inds],recon[inds]),2))
# }

Run the code above in your browser using DataLab