## Not run:
# ## Simulated example.
#
# set.seed(100)
# x <- 1:20
# y1 <- 3 + x + rnorm(20)
# y2 <- 3 - x - 5*(x - 15)*(x > 15) + rnorm(20)
# y <- c(y1, y2)
# x <- c(x, x)
#
# set.seed(100)
# be <- list(c(3, -1, -5), c(3, 1))
# s <- c(1, 1)
# psi.locs <- list(comp.1 = list(x = 15), comp.2 = NULL)
# out <- segregmixEM(y, cbind(1,x), verb = TRUE, k = 2,
# beta = be, sigma = s, lambda = c(1, 1)/2,
# seg.Z = list(~x, NULL), psi = rbind(1, 0),
# psi.locs = psi.locs, epsilon = 0.9)
#
# z <- seq(0, 21, len = 40)
# plot(x, y, col = apply(out$post, 1, which.max) + 1, pch = 19,
# cex.lab = 1.4, cex = 1.4)
# b <- out$beta
# d <- out$psi.locs
# lines(z, b[[1]][1] + b[[1]][2] * z + b[[1]][3] *
# (z - d[[1]][[1]]) * (z > d[[1]][[1]]) , col = 2, lwd = 2)
# lines(z, b[[2]][1] + b[[2]][2] * z, col = 3, lwd = 2)
# abline(v = out$psi.locs[[1]][1], col = 2, lty = 2)
# ## End(Not run)
## Not run:
# ## Example using the NOdata.
#
# data(NOdata)
# attach(NOdata)
#
# set.seed(100)
# be <- list(c(1.30, -0.13, 0.08), c(0.56, 0.09))
# s <- c(0.02, 0.04)
# psi.locs <- list(comp.1 = list(NO = 1.57), comp.2 = NULL)
# out <- segregmixEM(Equivalence, cbind(NO), verb = TRUE, k = 2,
# beta = be, sigma = s, lambda = c(1, 1)/2,
# seg.Z = list(~NO, NULL), psi = rbind(1, 0),
# psi.locs = psi.locs, epsilon = 0.1)
#
# z <- seq(0, 5, len = 1000)
# plot(NOdata, col = apply(out$post, 1, which.max) + 1, pch = 19,
# cex.lab = 1.4, cex = 1.4, ylab = "Equivalence Ratio")
# b <- out$beta
# d <- out$psi.locs
# lines(z, b[[1]][1] + b[[1]][2] * z + b[[1]][3] *
# (z - d[[1]][[1]]) * (z > d[[1]][[1]]) , col = 2, lwd = 2)
# lines(z, b[[2]][1] + b[[2]][2] * z, col = 3, lwd = 2)
# abline(v = out$psi.locs[[1]][1], col = 2, lty = 2)
#
# detach(NOdata)
# ## End(Not run)
Run the code above in your browser using DataLab