Last chance! 50% off unlimited learning
Sale ends in
reliab_test(x, scale.items = FALSE, digits = 3)
split_half(x, digits = 3)
cronb(x)
mic(x, cor.method = c("pearson", "spearman", "kendall"))
x
may be a matrix
as
returned by the cor
-function, or a data frame
with items (e.g. from a test or questionnaire).TRUE
, the data frame's vectors will be scaled. Recommended,
when the variables have different measures / scales.mic()
, indicates the correlation computation method. May be one of
"spearman"
(default), "pearson"
or "kendall"
.
You may use initial letter only.Brown W. 1910. Some experimental results in the correlation of mental abilities. British Journal of Psychology (3): 296–322. \Sexpr[results=rd,stage=build]{tools:::Rd_expr_doi("#1")}10.1111/j.2044-8295.1910.tb00207.xhttp://doi.org/10.1111/j.2044-8295.1910.tb00207.xdoi:\ifelse{latex}{\out{~}}{ }latex~ 10.1111/j.2044-8295.1910.tb00207.x
Piedmont RL. 2014. Inter-item Correlations. In: Michalos AC (eds) Encyclopedia of Quality of Life and Well-Being Research. Dordrecht: Springer, 3303-3304. \Sexpr[results=rd,stage=build]{tools:::Rd_expr_doi("#1")}10.1007/978-94-007-0753-5_1493http://doi.org/10.1007/978-94-007-0753-5_1493doi:\ifelse{latex}{\out{~}}{ }latex~ 10.1007/978-94-007-0753-5_1493
cronb
to calculate
Cronbach's Alpha; reliab_test
to compute a reliability
test (item-discrimination); mic
to calculate the mean
inter-item-correlation and split_half
to calculate
the split-half reliability (with Spearman–Brown adjustment).
library(sjmisc)
# Data from the EUROFAMCARE sample dataset
data(efc)
# retrieve variable and value labels
varlabs <- get_label(efc)
# recveive first item of COPE-index scale
start <- which(colnames(efc) == "c82cop1")
# recveive last item of COPE-index scale
end <- which(colnames(efc) == "c90cop9")
# create data frame with COPE-index scale
x <- efc[, c(start:end)]
colnames(x) <- varlabs[c(start:end)]
# reliability tests
reliab_test(x)
# split-half-reliability
split_half(x)
# cronbach's alpha
cronb(x)
# mean inter-item-correlation
mic(x)
## Not run:
# library(sjPlot)
# sjt.df(reliab_test(x), describe = FALSE, show.cmmn.row = TRUE,
# string.cmmn = sprintf("Cronbach's α=%.2f", cronb(x)))
#
# # Compute PCA on Cope-Index, and perform a
# # reliability check on each extracted factor.
# factors <- sjt.pca(x)$factor.index
# findex <- sort(unique(factors))
# library(sjPlot)
# for (i in seq_len(length(findex))) {
# rel.df <- subset(x, select = which(factors == findex[i]))
# if (ncol(rel.df) >= 3) {
# sjt.df(reliab_test(rel.df), describe = FALSE, show.cmmn.row = TRUE,
# use.viewer = FALSE, title = "Item-Total-Statistic",
# string.cmmn = sprintf("Scale's overall Cronbach's α=%.2f",
# cronb(rel.df)))
# }
# }## End(Not run)
Run the code above in your browser using DataLab