data(BloodBrain)
set.seed(1)
tmp <- createDataPartition(logBBB,
                           p = .8,
                           times = 100)
rpartFit <- train(bbbDescr, logBBB,
                  "rpart", 
                  tuneLength = 16,
                  trControl = trainControl(
                    method = "LGOCV", index = tmp))
ctreeFit <- train(bbbDescr, logBBB,
                  "ctree", 
                  trControl = trainControl(
                    method = "LGOCV", index = tmp))
earthFit <- train(bbbDescr, logBBB,
                  "earth",
                  tuneLength = 20,
                  trControl = trainControl(
                    method = "LGOCV", index = tmp))
## or load pre-calculated results using:
## load(url("http://caret.r-forge.r-project.org/Classification_and_Regression_Training_files/exampleModels.RData"))
resamps <- resamples(list(CART = rpartFit,
                          CondInfTree = ctreeFit,
                          MARS = earthFit))
resamps
summary(resamps)Run the code above in your browser using DataLab