Last chance! 50% off unlimited learning
Sale ends in
The conditional residuals are obtained by subtracting the fitted values from the response vector, while the quantile residuals are obtained by inverting the estimated distribution function for each observation to obtain approximately normally distributed residuals. See, for instance, dunn1996randomized;textualARCensReg and kalliovirta2012misspecification;textualARCensReg.
# S3 method for ARpCRM
residuals(object, ...)# S3 method for ARtpCRM
residuals(object, ...)
An object of class "residARpCRM", with the following components:
Vector with the conditional residuals of length
Vector with the quantile residuals of length
Generic function plot
has methods to show a graphic of residual vs. time, an autocorrelation plot, a histogram, and Quantile-Quantile (Q-Q) plot for the quantile residuals.
An object inheriting from class ARpCRM
or ARtpCRM
,
representing a fitted AR(p) censored linear model.
Further arguments passed to or from other methods.
Fernanda L. Schumacher, Katherine L. Valeriano, Victor H. Lachos, Christian E. Galarza, and Larissa A. Matos
dunn1996randomizedARCensReg
kalliovirta2012misspecificationARCensReg
ARCensReg
, ARtCensReg
# \donttest{
## Example 1: Generating data with normal innovations
set.seed(93899)
x = cbind(1, runif(300))
dat1 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05, innov="norm")
# Fitting the model with normal innovations
mod1 = ARCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y,
x, p=2, tol=0.001)
mod1$tab
plot(residuals(mod1))
# Fitting the model with Student-t innovations
mod2 = ARtCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y,
x, p=2, tol=0.001)
mod2$tab
plot(residuals(mod2))
## Example 2: Generating heavy-tailed data
set.seed(12341)
x = cbind(1, runif(300))
dat2 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05, innov="t", nu=3)
# Fitting the model with normal innovations
mod3 = ARCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y,
x, p=2, tol=0.001)
mod3$tab
plot(residuals(mod3))
# Fitting the model with Student-t innovations
mod4 = ARtCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y,
x, p=2, tol=0.001)
mod4$tab
plot(residuals(mod4))
# }
Run the code above in your browser using DataLab