Using the object of S5, the maximum a posteriori (MAP) model, its posterior probability, and the marginal inclusion probabilities are provided.
result(fit)
an object of the 'S5' function.
the MAP model
the posterior probability of the MAP model
the marginal inclusion probabilities
the binary vaiables of searched models by S5
the corresponding log (unnormalized) posterior model probabilities
the corresponding (normalized) posterior model probabilities
the tuning parameter used in the model selection
Shin, M., Bhattacharya, A., Johnson V. E. (2018) A Scalable Bayesian Variable Selection Using Nonlocal Prior Densities in Ultrahigh-dimensional Settings, Statistica Sinica.
Hans, C., Dobra, A., and West, M. (2007). Shotgun stochastic search for large p regression. Journal of the American Statistical Association, 102, 507-516.
Nikooienejad,A., Wang, W., and Johnson V.E. (2016). Bayesian variable selection for binary outcomes in high dimensional genomic studies using non-local priors. Bioinformatics, 32(9), 1338-45.
# NOT RUN {
p=5000
n = 200
indx.beta = 1:5
xd0 = rep(0,p);xd0[indx.beta]=1
bt0 = rep(0,p);
bt0[1:5]=c(1,1.25,1.5,1.75,2)*sample(c(1,-1),5,replace=TRUE)
xd=xd0
bt=bt0
X = matrix(rnorm(n*p),n,p)
y = X%*%bt0 + rnorm(n)*sqrt(1.5)
X = scale(X)
y = y-mean(y)
y = as.vector(y)
### piMoM
#C0 = 2 # the number of repetitions of S5 algorithms to explore the model space
#tuning = 10 # tuning parameter
#tuning = hyper_par(type="pimom",X,y,thre = p^-0.5)
#print(tuning)
#ind_fun = ind_fun_pimom # choose the prior on the regression coefficients (pimom in this case)
#model = Bernoulli_Uniform # choose the model prior
#tem = seq(0.4,1,length.out=20)^2 # the sequence of the temperatures
#fit_pimom = S5(X,y,ind_fun=ind_fun,model = model,tuning=tuning,tem=tem,C0=C0)
#fit_pimom$GAM # the searched models by S5
#fit_pimom$OBJ # the corresponding log (unnormalized) posterior probability
#res_pimom = result(fit_pimom)
#str(res_pimom)
#print(res_pimom$hppm)
#print(res_pimom$hppm.prob)
#plot(res_pimom$marg.prob,ylim=c(0,1))
# }
Run the code above in your browser using DataLab