data(
plants_df,
plants_response,
plants_predictors,
plants_distance
)
m <- rf(
data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = c(100, 1000, 2000),
ranger.arguments = list(
num.trees = 50,
min.node.size = 20
),
verbose = FALSE,
n.cores = 1
)
class(m)
#variable importance
m$importance$per.variable
m$importance$per.variable.plot
#model performance
m$performance
#autocorrelation of residuals
m$residuals$autocorrelation$per.distance
m$residuals$autocorrelation$plot
#model predictions
m$predictions$values
#predictions for new data (using stats::predict)
y <- stats::predict(
object = m,
data = plants_df[1:5, ],
type = "response"
)$predictions
#alternative: pass arguments via ranger.arguments list
args <- list(
data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = c(100, 1000, 2000),
num.trees = 50,
min.node.size = 20,
num.threads = 1
)
m <- rf(
ranger.arguments = args,
verbose = FALSE
)
Run the code above in your browser using DataLab