## Not run: 
# data(BloodBrain)
# 
# x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
# x <- x[, -findCorrelation(cor(x), .8)]
# x <- as.data.frame(x)
# 
# set.seed(1)
# lmProfile <- rfe(x, logBBB,
#                  sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
#                  rfeControl = rfeControl(functions = lmFuncs, 
#                                          number = 200))
# set.seed(1)
# lmProfile2 <- rfe(x, logBBB,
#                  sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
#                  rfeControl = rfeControl(functions = lmFuncs, 
#                                          rerank = TRUE, 
#                                          number = 200))
# 
# xyplot(lmProfile$results$RMSE + lmProfile2$results$RMSE  ~ 
#        lmProfile$results$Variables, 
#        type = c("g", "p", "l"), 
#        auto.key = TRUE)
# 
# rfProfile <- rfe(x, logBBB,
#                  sizes = c(2, 5, 10, 20),
#                  rfeControl = rfeControl(functions = rfFuncs))
# 
# bagProfile <- rfe(x, logBBB,
#                   sizes = c(2, 5, 10, 20),
#                   rfeControl = rfeControl(functions = treebagFuncs))
# 
# set.seed(1)
# svmProfile <- rfe(x, logBBB,
#                   sizes = c(2, 5, 10, 20),
#                   rfeControl = rfeControl(functions = caretFuncs, 
#                                           number = 200),
#                   ## pass options to train()
#                   method = "svmRadial")
# 
# ## classification 
# 
# data(mdrr)
# mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
# mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]
# 
# set.seed(1)
# inTrain <- createDataPartition(mdrrClass, p = .75, list = FALSE)[,1]
# 
# train <- mdrrDescr[ inTrain, ]
# test  <- mdrrDescr[-inTrain, ]
# trainClass <- mdrrClass[ inTrain]
# testClass  <- mdrrClass[-inTrain]
# 
# set.seed(2)
# ldaProfile <- rfe(train, trainClass,
#                   sizes = c(1:10, 15, 30),
#                   rfeControl = rfeControl(functions = ldaFuncs, method = "cv"))
# plot(ldaProfile, type = c("o", "g"))
# 
# postResample(predict(ldaProfile, test), testClass)
# 
# ## End(Not run)
#######################################
## Parallel Processing Example via multicore
## Not run: 
# library(doMC)
# 
# ## Note: if the underlying model also uses foreach, the
# ## number of cores specified above will double (along with
# ## the memory requirements)
# registerDoMC(cores = 2)
# 
# set.seed(1)
# lmProfile <- rfe(x, logBBB,
#                  sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
#                  rfeControl = rfeControl(functions = lmFuncs, 
#                                          number = 200))
# 
# 
# ## End(Not run)
Run the code above in your browser using DataLab