Last chance! 50% off unlimited learning
Sale ends in
Density, cumulative distribution function, quantile function and
random number generation for the extreme value mixture model with gamma for bulk
distribution upto the threshold and conditional GPD above threshold with continuity
at threshold. The parameters
are the gamma shape gshape
and scale gscale
, threshold u
GPD shape xi
and tail fraction phiu
.
dgammagpdcon(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, log = FALSE)pgammagpdcon(q, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, lower.tail = TRUE)
qgammagpdcon(p, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, lower.tail = TRUE)
rgammagpdcon(n = 1, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), xi = 0, phiu = TRUE)
quantiles
gamma shape (positive)
gamma scale (positive)
threshold
shape parameter
probability of being above threshold TRUE
logical, if TRUE then log density
quantiles
logical, if FALSE then upper tail probabilities
cumulative probabilities
sample size (positive integer)
dgammagpdcon
gives the density,
pgammagpdcon
gives the cumulative distribution function,
qgammagpdcon
gives the quantile function and
rgammagpdcon
gives a random sample.
Extreme value mixture model combining gamma distribution for the bulk below the threshold and GPD for upper tail with continuity at threshold.
The user can pre-specify phiu
permitting a parameterised value for the tail fraction phiu=TRUE
the tail fraction is estimated as the tail fraction from the
gamma bulk model.
The cumulative distribution function with tail fraction phiu=TRUE
), upto the
threshold pgamma(x, gshape, 1/gscale)
and
pgpd(x, u, sigmau, xi)
) respectively.
The cumulative distribution function for pre-specified
The continuity constraint means that dgammma(x, gshape, gscale)
and
dgpd(x, u, sigmau, xi)
) respectively. The resulting GPD scale parameter is then:
The gamma is defined on the non-negative reals, so the threshold must be positive.
Though behaviour at zero depends on the shape (
where
See gpd
for details of GPD upper tail component and
dgamma
for details of gamma bulk component.
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling. 4(3), 227-244.
Other mgamma fmgamma
gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnormgpd
mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon
,
fgammagpd
, fmgammagpdcon
,
fmgammagpd
, fmgamma
,
gammagpd
, mgammagpdcon
,
mgammagpd
, mgamma
# NOT RUN {
set.seed(1)
par(mfrow = c(2, 2))
x = rgammagpdcon(1000, gshape = 2)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpdcon(xx, gshape = 2))
# three tail behaviours
plot(xx, pgammagpdcon(xx, gshape = 2), type = "l")
lines(xx, pgammagpdcon(xx, gshape = 2, xi = 0.3), col = "red")
lines(xx, pgammagpdcon(xx, gshape = 2, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)
x = rgammagpdcon(1000, gshape = 2, u = 3, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, phiu = 0.2))
plot(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=0, phiu = 0.2), type = "l")
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),
col=c("black", "red", "blue"), lty = 1)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab