Last chance! 50% off unlimited learning
Sale ends in
location
and
scale parameter scale
.dgumbel(x, location = 0, scale = 1, log = FALSE)
pgumbel(q, location = 0, scale = 1)
qgumbel(p, location = 0, scale = 1)
rgumbel(n, location = 0, scale = 1)
length(n) > 1
then the length is taken to be the number required.log = TRUE
then the logarithm of the density is returned.dgumbel
gives the density,
pgumbel
gives the distribution function,
qgumbel
gives the quantile function, and
rgumbel
generates random deviates.-digamma(1)
). See gumbel
, the n
, all the above arguments may be vectors and
are recyled to the appropriate length if necessary.
gumbel
,
egumbel
,
gev
.mu = 1; sigma = 2
y = rgumbel(n = 100, loc=mu, scale=sigma)
mean(y)
mu - sigma * digamma(1) # population mean
var(y)
sigma^2 * pi^2 / 6 # population variance
x = seq(-2.5, 3.5, by = 0.01)
loc = 0; sigma = 1
plot(x, dgumbel(x, loc, sigma), type = "l", col = "blue", ylim=c(0,1),
main = "Blue is density, red is cumulative distribution function",
sub = "Purple are 5,10,...,95 percentiles", ylab = "", las = 1)
abline(h = 0, col = "blue", lty = 2)
lines(qgumbel(seq(0.05, 0.95, by = 0.05), loc, sigma),
dgumbel(qgumbel(seq(0.05, 0.95, by = 0.05), loc, sigma), loc, sigma),
col = "purple", lty = 3, type = "h")
lines(x, pgumbel(x, loc, sigma), type = "l", col = "red")
abline(h = 0, lty = 2)
Run the code above in your browser using DataLab