Last chance! 50% off unlimited learning
Sale ends in
rhierLinearModel
implements a Gibbs Sampler for hierarchical linear models with a normal prior.
rhierLinearModel(Data, Prior, Mcmc)
list(regdata,Z) (Z optional).
list(Deltabar,A,nu.e,ssq,nu,V) (optional).
list(R,keep,nprint) (R required).
a list containing
nreg x nvar x R/keep array of individual regression coef draws
R/keep x nreg array of error variance draws
R/keep x nz x nvar array of Deltadraws
R/keep x nvar*nvar array of Vbeta draws
Model: length(regdata) regression equations.
Priors:
Note: if you don't have any Z vars, omit Z in the Data
argument and a vector of ones will be inserted for you. In this case (of no Z vars), the matrix
List arguments contain:
regdata
list of lists with X,y matrices for each of length(regdata) regressions
regdata[[i]]$X
X matrix for equation i
regdata[[i]]$y
y vector for equation i
Deltabar
nz x nvar matrix of prior means (def: 0)
A
nz x nz matrix for prior precision (def: .01I)
nu.e
d.f. parm for regression error variance prior (def: 3)
ssq
scale parm for regression error var prior (def: var(
nu
d.f. parm for Vbeta prior (def: nvar+3)
V
Scale location matrix for Vbeta prior (def: nu*I)
R
number of MCMC draws
keep
MCMC thinning parm: keep every keepth draw (def: 1)
nprint
print the estimated time remaining for every nprint'th draw (def: 100)
For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch, Chapter 3. http://www.perossi.org/home/bsm-1
##
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
nreg=100; nobs=100; nvar=3
Vbeta=matrix(c(1,.5,0,.5,2,.7,0,.7,1),ncol=3)
Z=cbind(c(rep(1,nreg)),3*runif(nreg)); Z[,2]=Z[,2]-mean(Z[,2])
nz=ncol(Z)
Delta=matrix(c(1,-1,2,0,1,0),ncol=2)
Delta=t(Delta) # first row of Delta is means of betas
Beta=matrix(rnorm(nreg*nvar),nrow=nreg)%*%chol(Vbeta)+Z%*%Delta
tau=.1
iota=c(rep(1,nobs))
regdata=NULL
for (reg in 1:nreg) { X=cbind(iota,matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
y=X%*%Beta[reg,]+sqrt(tau)*rnorm(nobs); regdata[[reg]]=list(y=y,X=X) }
Data1=list(regdata=regdata,Z=Z)
Mcmc1=list(R=R,keep=1)
out=rhierLinearModel(Data=Data1,Mcmc=Mcmc1)
cat("Summary of Delta draws",fill=TRUE)
summary(out$Deltadraw,tvalues=as.vector(Delta))
cat("Summary of Vbeta draws",fill=TRUE)
summary(out$Vbetadraw,tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
if(0){
## plotting examples
plot(out$betadraw)
plot(out$Deltadraw)
}
Run the code above in your browser using DataLab