Learn R Programming

Directional (version 4.0)

Simulation of random values from a spherical Kent distribution: Simulation of random values from a spherical Kent distribution

Description

Simulation of random values from a spherical Kent distribution.

Usage

rkent(n, k, m, b)

Arguments

n

The sample size.

k

The concentraion parameter \(\kappa\). It has to be greater than 0.

m

The mean direction (Fisher part).

b

The ovalness parameter, \(\beta\).

Value

A matrix with the simulated data.

Details

Random values from a Kent distribution on the sphere are generated. The function generates from a spherical Kent distribution using rfb with an arbitrary mean direction and then rotates the data to have the desired mean direction.

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

See Also

rfb, rbingham, rvmf, f.rbing

Examples

Run this code
# NOT RUN {
k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- diag( c(-5, 0, 5) )
x <- rfb(500, k, mu, A)
kent.mle(x)
y <- rkent(500, k, mu, A[3, 3])
kent.mle(y)
# }

Run the code above in your browser using DataLab