rl(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, ...)
## S3 method for class 'gpd':
rl(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, ...)
## S3 method for class 'bgpd':
rl(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL, ...)
## S3 method for class 'bootgpd':
rl(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL, ...)## S3 method for class 'rl.gpd':
plot(x, xlab, ylab, main, pch= 1, ptcol =2 , cex=.75, linecol = 4 ,
cicol = 0, polycol = 15, smooth = TRUE, sameAxes=TRUE, type="median", ... )
## S3 method for class 'rl.bgpd':
plot(x, xlab, ylab, main, pch= 1, ptcol =2 , cex=.75, linecol = 4 ,
cicol = 0, polycol = 15, smooth = TRUE, sameAxes=TRUE, type="median", ... )
## S3 method for class 'rl.bootgpd':
plot(x, xlab, ylab, main, pch= 1, ptcol =2 , cex=.75, linecol = 4 ,
cicol = 0, polycol = 15, smooth = TRUE, sameAxes=TRUE, type="median", ... )
## S3 method for class 'rl.gpd':
print(x, digits=3, ...)
## S3 method for class 'rl.bgpd':
print(x, digits=3, ...)
## S3 method for class 'rl.bootgpd':
print(x, digits=3, ...)
## S3 method for class 'rl.gpd':
summary(object, digits=3, ...)
## S3 method for class 'rl.bgpd':
summary(object, digits=3, ...)
## S3 method for class 'rl.bootgpd':
summary(object, digits=3, ...)
gpd
, bgpd
or bootgpd
.M = 1000
.se.fit = FALSE
.ci.fit = FALSE
. For objects of class gpd
, if set to TRUE
then the confidence interval is a simple symmetric confidence interval
baseci.fit = TRUE
, a (1 - alpha)% confidence interval is returned.
Defaults to alpha = 0.050
.unique. = TRUE
, predictions for only the unique values of
the linear predictors are returned, rather than for every row of the original dataframe or of
newdata
if this latter is specified. Defaults to unique. = TRUE
bgpd
and bootgpd
methods, if all = TRUE
, the
predictions are returned for every simulated parameter vector. Otherwise,
only a summary of the posterior/bootstrap distribution is returned.
Defaults to all
bgpd
and bootgpd
methods, a summary function
can be passed in. If sumfun = FALSE
, the default, the
summary function used returns the estimated mean and median, and quantiles
implied by alpha
.rl.bgpd
or rl.bootgpd
, specifies whether to use the sample mean (type="mean"
) or median (type="median"
) estimate of the return levels.gpd
family of functions, only a fraction of the data is actually
included in the model; the fitted GPD is a conditional model, conditioning on the threshold having been exceeded. This consideration is taken into account by rl
which calculates unconditional return levels from the entire distribution of observations above and below the GPD fitting threshold.mod <- gpd(rain, qu=.8) # daily rainfall observations
rl(mod, M=100*365) # 100-year return level
Run the code above in your browser using DataLab