Learn R Programming

RobLox (version 0.8.2)

rlOptIC: Computation of the optimally robust IC for AL estimators

Description

The function rlOptIC computes the optimally robust IC for AL estimators in case of normal location and (convex) contamination neighborhoods. The definition of these estimators can be found in Rieder (1994) or Kohl (2005), respectively.

Usage

rlOptIC(r, mean = 0, sd = 1, bUp = 1000, computeIC = TRUE)

Arguments

r
non-negative real: neighborhood radius.
mean
specified mean.
sd
specified standard deviation.
bUp
positive real: the upper end point of the interval to be searched for the clipping bound b.
computeIC
logical: should IC be computed. See details below.

Value

  • If 'computeIC' is 'TRUE' an object of class "ContIC" is returned, otherwise a list of Lagrange multipliers
  • Astandardizing constant
  • acentering constant; always '= 0' is this symmetric setup
  • boptimal clipping bound

concept

  • normal location
  • influence curve

Details

If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', and 'b' contained in the optimally robust IC are computed.

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer. Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.

See Also

ContIC-class, roblox

Examples

Run this code
IC1 <- rlOptIC(r = 0.1)
distrExOptions("ErelativeTolerance" = 1e-12)
checkIC(IC1)
distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
Risks(IC1)
cent(IC1)
clip(IC1)
stand(IC1)
plot(IC1)

Run the code above in your browser using DataLab