
Last chance! 50% off unlimited learning
Sale ends in
rlplot.egev(object, plot.it = TRUE,
probability = c((1:9)/100, (1:9)/10, 0.95, 0.99, 0.995, 0.999),
add.arg = FALSE, xlab = "Return Period", ylab = "Return Level",
main = "Return Level Plot",
pch = par()$pch, pcol.arg = par()$col, pcex = par()$cex,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
slty.arg = par()$lty, scol.arg = par()$col, slwd.arg = par()$lwd,
ylim = NULL, log = TRUE, CI = TRUE, epsilon = 1e-05, ...)
vglm
with a family function either
"gev"
or "egev"
.FALSE
no plot will be done.par
.par
.title
.par
.col
argument of par
.cex
argument of par
.lty
argument of par
.col
argument of par
.lwd
argument of par
.CI=TRUE
.TRUE
then log=""
otherwise
log="x"
. This changes the labelling of the x-axis only.plot
function
when setting up the entire plot. Useful arguments here include
sub
and las
.post
slot of the object is a list called
rlplot
with list components-log(probability)
, which is used on the x-axis.probability
(if CI=TRUE
).probability) and $G$ is the cumulative distribution function of the GEV distribution. The quantity $z_p$ is known as the return level associated with the return period $1/p$. For many applications, this means $z_p$ is exceeded by the annual maximum in any particular year with probability $p$.
The points in the plot are the actual data.
egev
.gdata = data.frame(y = rgev(n <- 100, scale = 2, shape = -0.1))
fit = vglm(y ~ 1, egev, gdata, trace = TRUE)
# Identity link for all parameters:
fit2 = vglm(y ~ 1, egev(lshape = identity, lscale = identity,
iscale = 10), gdata, trace = TRUE)
coef(fit2, matrix = TRUE)
par(mfrow = c(1, 2))
rlplot(fit) -> i1
rlplot(fit2, pcol = "darkorange", lcol = "blue", log = FALSE,
scol = "darkgreen", slty = "dashed", las = 1) -> i2
range(i2@post$rlplot$upper - i1@post$rlplot$upper) # Should be near 0
range(i2@post$rlplot$lower - i1@post$rlplot$lower) # Should be near 0
Run the code above in your browser using DataLab