Learn R Programming

sirt (version 1.14-0)

rm.facets: Rater Facets Models with Item/Rater Intercepts and Slopes

Description

This function estimates the unidimensional rater facets model (Lincare, 1994) and an extension to slopes (see Details). The estimation is conducted by an EM algorithm employing marginal maximum likelihood.

Usage

rm.facets(dat, pid=NULL, rater=NULL, Qmatrix=NULL, theta.k=seq(-9, 9, len=30), est.b.rater=TRUE, est.a.item=FALSE, est.a.rater=FALSE, est.mean=FALSE , tau.item.fixed=NULL , a.item.fixed=NULL , b.rater.fixed=NULL , a.rater.fixed=NULL , max.b.increment=1, numdiff.parm=0.00001, maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4, mstepconv=0.001)
"summary"(object,...)
"anova"(object,...)
"logLik"(object,...)
"IRT.irfprob"(object,...)
"IRT.factor.scores"(object, type="EAP", ...)
"IRT.likelihood"(object,...)
"IRT.posterior"(object,...)
"IRT.modelfit"(object,...)
"summary"(object,...)

Arguments

dat
Original data frame. Ratings on variables must be in rows, i.e. every row corresponds to a person-rater combination.
pid
Person identifier.
rater
Rater identifier
Qmatrix
An optional Q-matrix. If this matrix is not provided, then by default the ordinary scoring of categories (from 0 to the maximum score of $K$) is used.
theta.k
A grid of theta values for the ability distribution.
est.b.rater
Should the rater severities $b_r$ be estimated?
est.a.item
Should the item slopes $a_i$ be estimated?
est.a.rater
Should the rater slopes $a_r$ be estimated?
est.mean
Optional logical indicating whether the mean of the trait distribution should be estimated.
tau.item.fixed
Matrix with fixed $\tau$ parameters. Non-fixed parameters must be declared by NA values.
a.item.fixed
Vector with fixed item discriminations
b.rater.fixed
Vector with fixed rater intercept parameters
a.rater.fixed
Vector with fixed rater discrmination parameters
max.b.increment
Maximum increment of item parameters during estimation
numdiff.parm
Numerical differentiation step width
maxdevchange
Maximum relative deviance change as a convergence criterion
globconv
Maximum parameter change
maxiter
Maximum number of iterations
msteps
Maximum number of iterations during an M step
mstepconv
Convergence criterion in an M step
object
Object of class rm.facets
type
Factor score estimation method. Factor score types "EAP", "MLE" and "WLE" are supported.
...
Further arguments to be passed

Value

A list with following entries: A list with following entries:

Details

This function models ratings $X_{pri}$ for person $p$, rater $r$ and item $i$ and category $k$ $$P( X_{pri} = k | \theta_p ) \propto exp( a_i a_r q_{ik} \theta_p - q_{ik} b_r - \tau_{ik} ) \quad , \quad \theta_p \sim N( 0 , \sigma^2 )$$ By default, the scores in the $Q$ matrix are $q_{ik}=k$. Item slopes $a_i$ and rater slopes $a_r$ are standardized such that their product equals one, i.e. $ \prod_i a_i = \prod_r a_r = 1$.

References

Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.

See Also

See also the TAM package for the estimation of more complicated facet models.

See rm.sdt for estimating a hierarchical rater model.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Partial Credit Model and Generalized partial credit model 
#                   5 items and 1 rater
#############################################################################
data(data.ratings1)
dat <- data.ratings1

# select rater db01
dat <- dat[ paste(dat$rater) == "db01" , ]

# Model 1: Partial Credit Model
mod1 <- rm.facets( dat[ , paste0( "k",1:5) ] , pid=dat$idstud , maxiter=15)

# Model 2: Generalized Partial Credit Model
mod2 <- rm.facets( dat[ , paste0( "k",1:5) ] ,  pid=dat$idstud  , 
           est.a.item=TRUE , maxiter=15)

summary(mod1)
summary(mod2)

## Not run: 
# #############################################################################
# # EXAMPLE 2: Facets Model: 5 items, 7 raters
# #############################################################################
# 
# data(data.ratings1)
# dat <- data.ratings1
# maxit <- 15    # maximum number of iterations, increase it in applications!
# 
# # Model 1: Partial Credit Model: no rater effects
# mod1 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater , 
#              pid=dat$idstud  , est.b.rater=FALSE  , maxiter=maxit)
# 
# # Model 2: Partial Credit Model: intercept rater effects
# mod2 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater  , 
#              pid=dat$idstud  , maxiter=maxit)
# 
# # extract individual likelihood
# lmod1 <- IRT.likelihood(mod1)   
# str(lmod1)
# # likelihood value
# logLik(mod1)
# # extract item response functions
# pmod1 <- IRT.irfprob(mod1)
# str(pmod1)
# # model comparison
# anova(mod1,mod2)             
# # absolute and relative model fit
# smod1 <- IRT.modelfit(mod1)
# summary(smod1)
# smod2 <- IRT.modelfit(mod2)
# summary(smod2)
# IRT.compareModels( smod1 , smod2 )
# # extract factor scores (EAP is the default)
# IRT.factor.scores(mod2)
# # extract WLEs
# IRT.factor.scores(mod2 , type="WLE")
# 
# # Model 2a: compare results with TAM package
# #   Results should be similar to Model 2
# library(TAM)
# mod2a <- TAM::tam.mml.mfr( resp= dat[ , paste0( "k",1:5) ] , 
#              facets= dat[ , "rater" , drop=FALSE] ,
#              pid= dat$pid , formulaA = ~ item*step + rater )
# 
# # Model 2b: Partial Credit Model: some fixed parameters
# # fix rater parameters for raters 1, 4 and 5
# b.rater.fixed <- rep(NA,7)
# b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0)  # fixed parameters
# # fix item parameters of first and second item
# tau.item.fixed <- round( mod2$tau.item , 1 )    # use parameters from mod2
# tau.item.fixed[ 3:5 , ] <- NA    # free item parameters of items 3, 4 and 5
# mod2b <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater  , 
#              b.rater.fixed=b.rater.fixed , tau.item.fixed=tau.item.fixed , 
#              est.mean = TRUE , pid=dat$idstud  , maxiter=maxit)
# summary(mod2b)             
#              
# # Model 3: estimated rater slopes
# mod3 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater , 
#             est.a.rater=TRUE  , maxiter=maxit)
# 
# # Model 4: estimated item slopes
# mod4 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater , 
#              pid=dat$idstud  ,  est.a.item=TRUE , maxiter=maxit)
# 
# # Model 5: estimated rater and item slopes
# mod5 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater , 
#              pid=dat$idstud  , est.a.rater=TRUE , est.a.item=TRUE , maxiter=maxit)
# summary(mod1)
# summary(mod2)
# summary(mod2a)
# summary(mod3)
# summary(mod4)
# summary(mod5)
# 
# # Model 5a: Some fixed parameters in Model 5
# # fix rater b parameters for raters 1, 4 and 5
# b.rater.fixed <- rep(NA,7)
# b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0)
# # fix rater a parameters for first four raters
# a.rater.fixed <- rep(NA,7)
# a.rater.fixed[ c(1,2,3,4) ] <- c(1.1,0.9,.85,1)
# # fix item b parameters of first item
# tau.item.fixed <- matrix( NA , nrow=5 , ncol=3 )
# tau.item.fixed[ 1 , ] <- c(-2,-1.5 , 1 )   
# # fix item a parameters
# a.item.fixed <- rep(NA,5)
# a.item.fixed[ 1:4 ] <- 1
# # estimate model
# mod5a <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater , 
#              pid=dat$idstud  , est.a.rater=TRUE , est.a.item=TRUE , 
#              tau.item.fixed=tau.item.fixed , b.rater.fixed=b.rater.fixed , 
#              a.rater.fixed=a.rater.fixed , a.item.fixed=a.item.fixed , 
#              est.mean=TRUE , maxiter=maxit)
# summary(mod5a)
# ## End(Not run)

Run the code above in your browser using DataLab