#############################################################################
# EXAMPLE 1: Hierarchical rater model (HRM-SDT) data.ratings1
#############################################################################
data(data.ratings1)
dat <- data.ratings1
# Model 1: Partial Credit Model: no rater effects
mod1 <- rm.sdt( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="n" , est.d.rater="n" , maxiter=15)
summary(mod1)
# Model 2: Generalized Partial Credit Model: no rater effects
mod2 <- rm.sdt( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="n" , est.d.rater="n" ,
est.a.item =TRUE , d.start=100 , maxiter=15)
summary(mod2)
# Model 3: Equal effects in SDT
mod3 <- rm.sdt( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="e" , est.d.rater="e" , maxiter=15)
summary(mod3)
# Model 4: Rater effects in SDT
mod4 <- rm.sdt( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="r" , est.d.rater="r" , maxiter=15)
summary(mod4)
#############################################################################
# EXAMPLE 2: HRM-SDT data.ratings3
#############################################################################
data(data.ratings3)
dat <- data.ratings3
dat <- dat[ dat$rater < 814 , ]
psych::describe(dat)
# Model 1: item- and rater-specific effects
mod1 <- rm.sdt( dat[ , paste0( "crit",c(2:4)) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="a" , est.d.rater="a" , maxiter=10)
summary(mod1)
plot(mod1)
# Model 2: Differing number of categories per variable
mod2 <- rm.sdt( dat[ , paste0( "crit",c(2:4,6)) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="a" , est.d.rater="a" , maxiter=10)
summary(mod2)
plot(mod2)
#############################################################################
# EXAMPLE 3: Hierarchical rater model with discrete skill spaces
#############################################################################
data(data.ratings3)
dat <- data.ratings3
dat <- dat[ dat$rater < 814 , ]
psych::describe(dat)
# Model 1: Discrete theta skill space with values of 0,1,2 and 3
mod1 <- rm.sdt( dat[ , paste0( "crit",c(2:4)) ] , theta.k = 0:3 , rater=dat$rater ,
pid=dat$idstud , est.c.rater="a" , est.d.rater="a" , skillspace="discrete" ,
maxiter=20)
summary(mod1)
plot(mod1)
# Model 2: Modelling of one item by using a discrete skill space and
# fixed item parameters
# fixed tau and a parameters
tau.item.fixed <- cbind( 1, 1:3, 100*cumsum( c( 0.5, 1.5, 2.5)) )
a.item.fixed <- cbind( 1, 100 )
# fit HRM-SDT
mod2 <- rm.sdt( dat[ , "crit2" , drop=FALSE] , theta.k = 0:3 , rater=dat$rater ,
tau.item.fixed=tau.item.fixed ,a.item.fixed=a.item.fixed, pid=dat$idstud,
est.c.rater="a", est.d.rater="a", skillspace="discrete", maxiter=20)
summary(mod2)
plot(mod2)
Run the code above in your browser using DataLab