Last chance! 50% off unlimited learning
Sale ends in
rmsip(...)
## S3 method for class 'enma':
rmsip(enma, ncore=NULL, subset=10, ...)
## S3 method for class 'default':
rmsip(modes.a, modes.b, subset=10,
row.name="a", col.name="b", ...)
"enma"
obtained from function
nma.pdbs
.ncore>1
requires package "pca"
or "nma"
as
obtained from functions pca.xyz
or nma
."pca"
or "nma"
as
obtained from functions pca.xyz
or nma
.rmsip
object with the following components:rmsip.enma
a numeric matrix containing all
pairwise RMSIP values of the modes stored in the enma
object.pca
, nma
,
overlap
. Other similarity measures:
sip
, covsoverlap
,
bhattacharyya
.
# Load data for HIV example
trj <- read.dcd(system.file("examples/hivp.dcd", package="bio3d"))
pdb <- read.pdb(system.file("examples/hivp.pdb", package="bio3d"))
# Do PCA on simulation data
xyz.md <- fit.xyz(pdb$xyz, trj, fixed.inds=1:ncol(trj))
pc.sim <- pca.xyz(xyz.md)
# NMA
modes <- nma(pdb)
# Calculate the RMSIP between the MD-PCs and the NMA-MODEs
r <- rmsip(modes, pc.sim, subset=10, row.name="NMA", col.name="PCA")
# Plot pairwise overlap values
plot(r, xlab="NMA", ylab="PCA")
Run the code above in your browser using DataLab