50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


predint (version 2.2.1)

rnbinom: Sampling of negative binomial data

Description

rnbinom() samples negative-binomial data. The following description of the sampling process is based on the parametrization used by Gsteiger et al. 2013.

Usage

rnbinom(n, lambda, kappa, offset = NULL)

Value

rnbinom() returns a data.frame with two columns: y as the observations and offset as the number of offsets per observation.

Arguments

n

defines the number of clusters (I)

lambda

defines the overall Poisson mean (λ)

kappa

dispersion parameter (κ)

offset

defines the number of experimental units per cluster (ni)

Details

The variance of the negative-binomial distribution is var(Yi)=niλ(1+κniλ). Negative-biomial observations can be sampled based on predefined values of κ, λ and ni:
Define the parameters of the gamma distribution as a=1κ and bi=1κniλ. Then, sample the Poisson means for each cluster λiGamma(a,bi). Finally, the observations yi are sampled from the Poisson distribution yiPois(λi)

References

Gsteiger, S., Neuenschwander, B., Mercier, F. and Schmidli, H. (2013): Using historical control information for the design and analysis of clinical trials with overdispersed count data. Statistics in Medicine, 32: 3609-3622. tools:::Rd_expr_doi("10.1002/sim.5851")

Examples

Run this code

# Sampling of negative-binomial observations
# with different offsets
set.seed(123)
rnbinom(n=5, lambda=5, kappa=0.13, offset=c(3,3,2,3,2))

Run the code above in your browser using DataLab