Learn R Programming

spatstat.random (version 3.3-3)

Random Generation Functionality for the 'spatstat' Family

Description

Functionality for random generation of spatial data in the 'spatstat' family of packages. Generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes including simple sequential inhibition, Matern inhibition models, Neyman-Scott cluster processes (using direct, Brix-Kendall, or hybrid algorithms), log-Gaussian Cox processes, product shot noise cluster processes and Gibbs point processes (using Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler, or coupling-from-the-past perfect simulation). Also generates random spatial patterns of line segments, random tessellations, and random images (random noise, random mosaics). Excludes random generation on a linear network, which is covered by the separate package 'spatstat.linnet'.

Copy Link

Version

Install

install.packages('spatstat.random')

Monthly Downloads

61,655

Version

3.3-3

License

GPL (>= 2)

Maintainer

Adrian Baddeley

Last Published

March 19th, 2025

Functions in spatstat.random (3.3-3)

default.rmhcontrol

Set Default Control Parameters for Metropolis-Hastings Algorithm.
clusterradius

Compute or Extract Effective Range of Cluster Kernel
dpakes

Pakes distribution
default.expand

Default Expansion Rule for Simulation of Model
clusterkernel

Extract Cluster Offspring Kernel
Window.rmhmodel

Extract Window of Spatial Object
is.stationary

Recognise Stationary and Poisson Point Process Models
as.owin.rmhmodel

Convert Data To Class owin
quadratresample

Resample a Point Pattern by Resampling Quadrats
dmixpois

Mixed Poisson Distribution
rDiggleGratton

Perfect Simulation of the Diggle-Gratton Process
rPoissonCluster

Simulate Poisson Cluster Process
expand.owin

Apply Expansion Rule
gauss.hermite

Gauss-Hermite Quadrature Approximation to Expectation for Normal Distribution
rMaternII

Simulate Matern Model II
rHardcore

Perfect Simulation of the Hardcore Process
rSSI

Simulate Simple Sequential Inhibition
rMosaicField

Mosaic Random Field
rags

Alternating Gibbs Sampler for Multitype Point Processes
rCauchy

Simulate Neyman-Scott Point Process with Cauchy cluster kernel
ragsAreaInter

Alternating Gibbs Sampler for Area-Interaction Process
rGaussPoisson

Simulate Gauss-Poisson Process
rLGCP

Simulate Log-Gaussian Cox Process
rDGS

Perfect Simulation of the Diggle-Gates-Stibbard Process
rPenttinen

Perfect Simulation of the Penttinen Process
rPSNCP

Simulate Product Shot-noise Cox Process
rcellnumber

Generate Random Numbers of Points for Cell Process
rMatClust

Simulate Matern Cluster Process
rMaternI

Simulate Matern Model I
rMosaicSet

Mosaic Random Set
reach

Interaction Distance of a Point Process Model
rclusterBKBC

Simulate Cluster Process using Brix-Kendall Algorithm or Modifications
recipEnzpois

First Reciprocal Moment of the Truncated Poisson Distribution
rThomas

Simulate Thomas Process
rpoislinetess

Poisson Line Tessellation
rVarGamma

Simulate Neyman-Scott Point Process with Variance Gamma cluster kernel
ragsMultiHard

Alternating Gibbs Sampler for Multitype Hard Core Process
rpoispp

Generate Poisson Point Pattern
rpoispp3

Generate Poisson Point Pattern in Three Dimensions
rpoisppOnLines

Generate Poisson Point Pattern on Line Segments
rmhstart

Determine Initial State for Metropolis-Hastings Simulation.
rcell

Simulate Baddeley-Silverman Cell Process
runifdisc

Generate N Uniform Random Points in a Disc
rjitter.psp

Random Perturbation of Line Segment Pattern
rNeymanScott

Simulate Neyman-Scott Process
rknn

Theoretical Distribution of Nearest Neighbour Distance
rmh.default

Simulate Point Process Models using the Metropolis-Hastings Algorithm.
rlabel

Random Re-Labelling of Point Pattern
rStrauss

Perfect Simulation of the Strauss Process
rmh

Simulate point patterns using the Metropolis-Hastings algorithm.
rStraussHard

Perfect Simulation of the Strauss-Hardcore Process
rmpoint

Generate N Random Multitype Points
rmhexpand

Specify Simulation Window or Expansion Rule
rmhmodel

Define Point Process Model for Metropolis-Hastings Simulation.
rshift

Random Shift
runifpoint

Generate N Uniform Random Points
rmhcontrol

Set Control Parameters for Metropolis-Hastings Algorithm.
rshift.ppp

Randomly Shift a Point Pattern
rmpoispp

Generate Multitype Poisson Point Pattern
rmhmodel.default

Build Point Process Model for Metropolis-Hastings Simulation.
rpoint

Generate N Random Points
rmhmodel.list

Define Point Process Model for Metropolis-Hastings Simulation.
rnoise

Random Pixel Noise
rpoisline

Generate Poisson Random Line Process
runifpointx

Generate N Uniform Random Points in Any Dimensions
rpoisppx

Generate Poisson Point Pattern in Any Dimensions
spatstat.random-internal

Internal spatstat.random functions
rstrat

Simulate Stratified Random Point Pattern
rtemper

Simulated Annealing or Simulated Tempering for Gibbs Point Processes
rshift.psp

Randomly Shift a Line Segment Pattern
runifpoint3

Generate N Uniform Random Points in Three Dimensions
runifpointOnLines

Generate N Uniform Random Points On Line Segments
rpoistrunc

Random Values from the Truncated Poisson Distribution
rshift.splitppp

Randomly Shift a List of Point Patterns
rthin

Random Thinning
rthinclumps

Random Thinning of Clumps
spatstat.random-package

The spatstat.random Package
update.rmhcontrol

Update Control Parameters of Metropolis-Hastings Algorithm
will.expand

Test Expansion Rule
clusterfield

Field of clusters
domain.rmhmodel

Extract the Domain of any Spatial Object