Learn R Programming

⚠️There's a newer version (3.5.4) of this package.Take me there.

mombf

Bayesian model selection and averaging for regression and mixtures for non-local and selected local priors.

Installation

# Install mombf from CRAN
install.packages("mombf")

# Or the development version
# from R-forge
install.packages("mombf", repos = "http://R-Forge.R-project.org")

# from GitHub:
# install.packages("devtools")
devtools::install_github("davidrusi/mombf")

Quick start

The main Bayesian model selection (BMS) function is modelSelection. Bayesian model averaging (BMA) is also available for some models, mainly linear regression and Normal mixtures. Details are in mombf's vignette, here we illustrate quickly how to get posterior model probabilities, marginal posterior inclusion probabilities, BMA point estimates and posterior intervals for the regression coefficients and predicted outcomes.

library(mombf)
set.seed(1234)
x <- matrix(rnorm(100*3),nrow=100,ncol=3)
theta <- matrix(c(1,1,0),ncol=1)
y <- x %*% theta + rnorm(100)

priorCoef <- momprior(tau=0.348)  # Default MOM prior on parameters
priorDelta <- modelbbprior(1,1)   # Beta-Binomial prior for model space
fit1 <- modelSelection(y ~ x[,1]+x[,2]+x[,3], priorCoef=priorCoef, priorDelta=priorDelta)
# Output
# Enumerating models...
# Computing posterior probabilities................ Done.

from here, we can also get the posterior model probabilities:

postProb(fit1)
# Output
#    modelid family           pp
# 7      2,3 normal 9.854873e-01
# 8    2,3,4 normal 7.597369e-03
# 15   1,2,3 normal 6.771575e-03
# 16 1,2,3,4 normal 1.437990e-04
# 3        3 normal 3.240602e-17
# 5        2 normal 7.292230e-18
# 4      3,4 normal 2.150174e-19
# 11     1,3 normal 9.892869e-20
# 6      2,4 normal 5.615517e-20
# 13     1,2 normal 2.226164e-20
# 12   1,3,4 normal 1.477780e-21
# 14   1,2,4 normal 3.859388e-22
# 1          normal 2.409908e-25
# 2        4 normal 1.300748e-27
# 9        1 normal 2.757778e-28
# 10     1,4 normal 3.971521e-30

also the BMA estimates, 95% intervals, marginal posterior probability

coef(fit1)
# Output
#              estimate        2.5%      97.5%      margpp
# (Intercept) 0.007230966 -0.02624289 0.04085951 0.006915374
# x[, 1]      1.134700387  0.93487948 1.33599873 1.000000000
# x[, 2]      1.135810652  0.94075622 1.33621298 1.000000000
# x[, 3]      0.000263446  0.00000000 0.00000000 0.007741168
# phi         1.100749637  0.83969879 1.44198567 1.000000000

and BMA predictions for y, 95% intervals

ypred <- predict(fit1)
head(ypred)
# Output
#         mean       2.5%       97.5%
# 1 -0.8936883 -1.1165154 -0.67003262
# 2 -0.2162846 -0.3509188 -0.08331286
# 3  1.3152329  1.0673711  1.56348261
# 4 -3.2299241 -3.6826696 -2.77728625
# 5 -0.4431820 -0.6501280 -0.23919345
# 6  0.7727824  0.6348189  0.90977798
cor(y, ypred[,1])
# Output
#           [,1]
# [1,] 0.8468436

Bug report

Please submit bug reports to the issue tracker.

Copy Link

Version

Install

install.packages('mombf')

Monthly Downloads

299

Version

3.1.3

License

GPL (>= 2) | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

David Rossell

Last Published

April 1st, 2022

Functions in mombf (3.1.3)

getBIC

Obtain BIC and EBIC
dmom

Non-local prior density, cdf and quantile functions.
diwish

Density for Inverse Wishart distribution
bbPrior

Priors on model space for variable selection problems
ddir

Dirichlet density
dalapl

Density and random draws from the asymmetric Laplace distribution
dpostNIW

Posterior Normal-IWishart density
eprod

Expectation of a product of powers of Normal or T random variables
bfnormmix

Number of Normal mixture components under Normal-IW and Non-local priors
cil

Treatment effect estimation for linear models via Confounder Importance Learning using non-local priors.
msfit-class

Class "msfit"
priorp2g

Moment and inverse moment prior elicitation
mixturebf-class

Class "mixturebf"
momknown

Bayes factors for moment, inverse moment and Zellner-Siow g-prior.
msPriorSpec-class

Class "msPriorSpec"
postModeOrtho

Bayesian model selection and averaging under block-diagonal X'X for linear models.
pmomLM

Bayesian variable selection and model averaging for linear and probit models via non-local priors.
hald

Hald Data
marginalNIW

Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
modelSelection

Bayesian variable selection for linear models via non-local priors.
rnlp

Posterior sampling for regression parameters
mombf

Moment and inverse moment Bayes factors for linear models.
nlpmarginals

Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
postSamples

Extract posterior samples from an object
postProb

Obtain posterior model probabilities