# NOT RUN {
# load data
data(BeetlesBody)
data(BeetlesMale)
data(BeetlesFemale)
# prepare proportion data
BeetlesMale$Dark <- BeetlesMale$Colour
BeetlesMale$Reddish <- (BeetlesMale$Colour-1)*-1
BeetlesColour <- aggregate(cbind(Dark, Reddish) ~ Treatment + Population + Container,
data=BeetlesMale, FUN=sum)
# Note: nboot and npermut are set to 0 for speed reasons. Use larger numbers
# for the real analysis.
# gaussian data (example with a single random effect)
rpt(BodyL ~ (1|Population), grname="Population", data=BeetlesBody,
nboot=0, npermut=0, datatype = "Gaussian")
# poisson data (example with two grouping levels and adjusted for fixed effect)
rpt(Egg ~ Treatment + (1|Container) + (1|Population), grname=c("Population"),
data = BeetlesFemale, nboot=0, npermut=0, datatype = "Poisson")
# }
# NOT RUN {
# binary data (example with estimation of the fixed effect variance)
rpt(Colour ~ Treatment + (1|Container) + (1|Population),
grname=c("Population", "Container", "Fixed"),
data=BeetlesMale, nboot=0, npermut=0, datatype = "Binary", adjusted = FALSE)
# proportion data (example for the estimation of raw variances,
# including residual and fixed-effect variance)
rpt(cbind(Dark, Reddish) ~ Treatment + (1|Population),
grname=c("Population", "Residual", "Fixed"), data=BeetlesColour,
nboot=0, npermut=0, datatype = "Proportion", ratio=FALSE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab